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Quantum Algorithms and Initialization 1

1. Objectives

Objective 1 : To construct a quantum algorithm to determine “Whether or not a function is
evenly distributed” in quantum polynomial time without initialization.

A function f:Z, —» Z,, is called evenly distributed if it is many-to-one and onto an evenly
spaced range. In more detail, the domain of f , Z is mapped onto a subset of K of Z,, which is

evenly spaced elements in the range Z,, with constant separation M /K , where K <M,N.

We construct quantum algorithms which can determine whether or not a function is evenly
distributed efficiently without initialization of the auxiliary register which is usually needed in
quantum computational algorithms.

Objective 2 : “The functional evaluation oracle” can be constructed from the functional phase
transform.

On a quantum computer, a function f : Z,, — Z,, is evaluated by the function evaluation oracle
that computes | X)+ | y) —=| X)+ | y® f(x)), where the first quantum register is called the control
register and the second register is called the auxiliary or ancillary register.

It has been shown that the quantum functional phase transform can be constructed from the
quantum functional evaluation oracle without initialization of auxiliary registers. However, the
converse has not been proven yet.

Obijective 2 is to show the converse of the previous result. That is. The function evaluation oracle
can be shown to be constructed from the functional phase transform that changes the phase of each
qubit selectively.

2. Status of Effort

It was not so trivial to construct unitary operations by which the interference pattern on the phases
for both evenly distributed functions and the others. So it was somewhat needed to restrict the
domain of evenly-distribution functions to Z, (that is, Boolean functions) and to analyze the n-th

root of unity produced by the quantum Fourier transform. Furthermore, we also simplified the
problem of evenly-distribution function to be the problem of evenly balanced function on which we
have constructed a quantum algorithm which can solve the problem in polynomial time. Based on
this result we have constructed an initialization-free quantum algorithm that can determine “whether
a function is evenly balanced or not” in quantum polynomial time. Then we have extended the
range of the function in order to make it to be an evenly distributed one.

3. Abstract

We generalized quantum algorithm distinguishes a wider class of functions promised to be either
constant or many to one and onto an evenly spaced range, so-called a evenly-distributed function.
As the original DJ-algorithm, the generalized algorithm solves this problem using a single
functional evaluation.

In spite of the incredible computing power of quantum computer, it has been demanded to use a
certain number of quantum registers in a specific state and the extra operations to initialize the state
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of the registers. However, it would help a lot to reduce the storage and operations if one can use any
arbitrary unknown quantum state that might be in the process of other quantum computer in order
to operate one’s own. So we consider the problem of distinguishing constant and evenly balanced
functions and present a quantum algorithm for this problem that does not require any initialization
of an auxiliary register involved in the process of functional evaluation and after solving the
problem recovers the initial state of an auxiliary register. Based on this approach, we have
investigated and present some algorithmic technique, in which a single auxiliary register in an
arbitrary unknown state is sufficient to implement the iterative procedure that is usually necessary
in quantum computations and recover the auxiliary register untouched. The technique is applicable
to the most case of quantum algorithms that give us an exponential speed-up and this is far beyond
our original objectives. The new algorithmic technique can be applied to any case of hidden
subgroup problems if the based group is commutative or not including period finding and Simon
problems. Since most known applications of the QFT can be considered as a generalization of
finding unknown period of a periodic function(for example, Shor's factoring algorithm[1] and
Hallgren's more recent algorithm for solving Pell's equation)[2], the initialization-free technique
could be applied to a lot of implementations of quantum algorithms.

3.1 Research Accomplishments
The Initialization-free generalized Deutsch-Jozsa type quantum Algorithms

We generalized the well-known Deutsch-Jozsa (DJ)[3] problem to the tasks of distinguishing
between constant functions and so-called evenly distributed and evenly balanced functions,
respectively. While any classical, deterministic black-box algorithm for the generalizations requires
exponentially many function calls in the input length, the quantum algorithms we present here only
need one or two such calls. The quantum circuit for the problem with evenly balanced function does
not even require its auxiliary registers to be initialized.

We first briefly recall the original DJ problem [3]. The input is a function f :Z; — Z, computed

by a black-box which is guaranteed to fulfill the following promise.
‘Either f is a constant function, (i.e., f(x)=0 for all x or f(x)=1 for all x), or f is balanced,

(i.e., f(x)=1 for exactly half of the inputs)’. Deutsch and Jozsa showed that this promise problem
is solvable by a quantum circuit using only one invocation of a black-box for f , which carries out
the unitary transformation

0@ | y)—= 0@ y® f(x)),
where xeZ; and ye Z,.

The whole circuit realizes the sequence of transformations
0M®[0)—= s H e |0>®H |0)

— / 2D ) ®H |0)

er"

i, ;Z S (=)W )@ H |0).

yeZy xeZj
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Where H is the Hadamard transform on a single qubit, |0") denotes the all-zero vector of length n,
and x-y is the inner product of the vectors x and y on Z;. The circuit requires an n -qubit
register containing the input for f and one auxiliary qubit for the function value. The measurement
of the n-qubit register after carrying out the above transformation yields |0") with certainty if the
function is constant and some other vector if it is balanced.

The two generalizations of the DJ problem considered here are as follows.

(1) Problem GDJ-ED (generalized Deutsch-Jozsa for evenly distributed functions).
The input is a function f :Z,, — Z,, which is either constant or evenly distributed,
i.e.) Thereis an integer K dividing M and N and another integer t such that
(i) The image of f isequalto (M/N)j+t j=0,...,K-1
(if) The functionis (N /K) -to-one

(2) Problem GDJ-EB (generalized Deutsch-Jozsa problem for evenly balanced functions).
The input is a function f :Z,, — Z,, which is either constant or evenly balanced,

i.e.) For half of all output values y of f , the parity of all bits in the representation of y as a
vector overZ,',m=[logM], is equal to 1.

From now on, we assume for simplicity that N =2" andM =2". We may identify values from
Z, and Z,, with vectors from Z; andZ;".

We first discuss the quantum algorithm which can solve the problem GDJ-ED efficiently.
Note that the original DJ algorithm encodes the values of f into a sum of powers of -1, which is a
square root of unity inZ, and this sum finally appears in the amplitude of|0"). Then due to the
properties of the roots of unity, the sum cancels out if the function under consideration is balanced.
The idea in the algorithm for GDJ-ED is to compute a sum of M -th roots of unity overZ,, instead
of a square root of unity inZ, . Instead of the standard black-box in the original DJ algorithm, a
black-box computing the transformation

| X)—> 0" | x)

is used, where @ :=e**'™ . This black-box operation is again sandwiched into two applications of

the Hadamard transform on n-qubits, as in the original DJ-problem. The final state computed by

the new algorithm is given by
Ly sepe
yeZ) xeZj
For a constant function f , the amplitude of |0") in this sum is @' ®, i.e., the result is observed with
certainty in a measurement of the n-qubit register. Due to the properties of the roots of unity, the
amplitude is equal to O if f is evenly distributed, and thus, a result different from |0") is observed.

Altogether, the algorithm solves the problem GDJ-ED.
Here, we present another algorithm which works with a black-box analogous to the standard one,
realizing the transformation
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| 0@ | y)—— | @]y + f (X))

where xe Z,, yeZ,, and ‘+’ stands for the addition modulo M .
This second algorithm requires an auxiliary register of [log M ]-qubits which is initialized with the
all-ones vector, [1°'°°™1y It also needs to apply the black-box only once.

Now, we consider the quantum algorithm which can solve the problem GDJ-EB using any
arbitrary mixed gquantum state as the auxiliary register and recovering it at the end of algorithm

without any deformation. The algorithm uses an n -qubit register initialized by |0") and an m -
qubit auxiliary register which is assumed to be in an arbitrary pure state| ¥) . On these registers, the
algorithm carries out the sequence of transformations

H"®I ,U7, 1, ®c ", U7, |, ®cy" H"®1_

in this order, where 1; denotes the identity operation on j qubits and

1 0
o, = :
0 -1

The black-box operation U'® on n-+mqubits is defined as
10®]y) =[xy f(X))

where xe Z; and y e Z," and ‘@’ denotes the bitwise exclusive-or, i.e., the addition in Z,".
Then it can be shown that the final state obtained by these transformations is

1

o 2 DI 00| )

yeZy xeZj
where p:Z) — Z, means the “parity function’, i.e., p((X,...,X,)) =X +...+X,(mod2) for any

(X, s X)) €Z .

Similarly with the original DJ-problem, constant and evenly balanced functions can now be
distinguished by a measurement of the first n-qubits. Furthermore, in terms of ‘purification’, the
algorithm also works for arbitrary initial states (i.e., also mixed ones) in the auxiliary register.

The Initialization-free quantum Algorithms for finding hidden subgroup structure

(Simon problem and finding unknown period)
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We have constructed a quantum algorithm that can solve Simon’s problem[4] in polynomial times
with allowing any arbitrary impure or even the completely mixed state %n as the auxiliary

register and turn it back without any deformation . The cost of the algorithm is essentially one extra
evaluation of U, within the circuit and the ability to choose random classical bit-strings on each

run. Moreover, replacing the Hadamard transforms in the algorithm for Simon’s problem with
Quantum Fourier Transforms (QFTSs), it is also possible to similarly modify the usual quantum
period-finding algorithm [1] to exploit fully mixed auxiliary registers.

A brief description of the algorithms is following.

First, we note that there exists an exact quantum polynomial-time algorithm for the Simon
problem[5]. However, we here deal with the original Simon algorithm which is polynomial-time in
the expected sense.

For convenience, we use the following notations. Let G = {ZZ”,@} be a group under the binary
operation @ , which is the bitwise XOR operation. For a subset | A| of |G|, let | A| denote the
cardinality of A.

We define a bilinear map G xG — Z, such that
Xy =X Yo ®---D X Yna with x= (XO" N Xn—l) Y= (yo" ) yn—l)

For a subgroup Hof G, let H” :{ xeG|xh=0 for all heH }denotethe
orthogonal subgroup of H .
We remark that the quotient group G/H is well-defined since G is an abelian group.

Let f:G — G be an arbitrary two-to-one map such that f(x) = f(y) if and only if x®y e H where

H = {0, h} is a subgroup of G for some non-zero h in G . Then the Simon problem is to find the
subgroup H, that is, to determine the value of h.

The original Simon algorithm is as follows:
(i) Prepare ‘0®”>®‘0®”> , (i) Apply W, ® 1, where W, is the n-qubit Walsh-Hadamard
transform, (iii) Apply U, , (iv) Apply W, ® | .

Then the resulting state is |®) = é > D (=1)”]y)®| f(x)) . If we measure the first n-qubit

yeH x'eG/H

state, then for each y € H™, the probability with which we obtain y as the outcome is é :

Thus, after expected O(n) repetitions of this procedure, at least n linearly independent values of y
can be collected so that the nontrivial h' is uniquely determined by solving the linear system of
equations h' y=0 and thus we have h'=h as required.

Now the initialization-free quantum algorithm for the Simon problem is of the following forms.
First, consider the following quantum algorithm:
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(i) Prepare an n-qubit state in the state |O> as the control qubits and an n-qubit state in an arbitrary
pure state [y/) = > o, |k) as the auxiliary qubits, (i) Apply W, ® I, (iii) Apply U, (iv) Choose a
k

random n-bit string w = (w,,---,w.,) and apply S, =0,° ®---® ¢, on the n-qubit auxiliary
qubits. (1 ®S,,), (v) Apply U, , (vi) Apply 1 ®S,, , (vii) Apply W, ® 1 .

Then the expect probability of obtaining a state y € H™ is exactly same with that of original
Simon algorithm.

In case when the quantum states we are dealing with are mixed state, it is also possible to
construct a super operator (more general form of quantum operation) which performs the
initialization-free Simon algorithm by means of the unitary operators used above.

Similarly, we can present the initialization-free quantum algorithm for the period-finding
problem. Let f:Z  — Z . be a periodic function with unknown period T.

Instead of Hadamard transformation in initialization-free Simon Algorithm, we use Quantum
Fourier Transform F on Z_, and an m-qubit unitary operation U, |y) — e*™”'"|—y) depending

on a random m-bit string w = (w,,---, W, ,) . That is, (i) Prepare an n-qubit state in the state |O> as

the control qubits and an m-qubit state in an arbitrary pure state |y/) =>_ e, |k) as the auxiliary
k

qubits, (ii) Apply F, ® 1, (iii) Apply U, , (iv) Apply 1 ®U , (v) Apply U, , (vi) Apply I ®U,,,
(vii) Apply F,®1.

Then again, it is quite routine to see that the expect probability of obtaining a state |y> from

which, we can get the information of the unknown period is exactly same with that of original
period-finding algorithm. The super operator for the case of mixed state can be also constructed by
the unitary operators used above.

3.2 Significance to the Field

(1) The limitation on the size of quantum computers makes it important to reuse qubits for auxiliary
registers. However, by the algorithmic technique we present here, any arbitrarily mixed state can be
used as the auxiliary qubits, and furthermore it can be fully recovered after completing the
computations so that the independent processes of several quantum computers can share auxiliary
registers. Furthermore, the removal of the preparation in a certain pure state as the initial state of the
auxiliary register and full recovery of the original state can make it possible to reuse the recovered
one by employing it in any other computations

[0 A single preparation of the auxiliary qubits in an arbitrarily mixed state is sufficient to implement
the iterative procedure that is usually necessary in quantum computation and that means an
immense reduction of the storage and operations in quantum computing.

(2) It is assumed that most quantum algorithms require some initialization at start-up, which is to
prepare a certain pure state as an initial state. However, in experimentally realizable proposals for
the implementation of quantum algorithms, it may be technically difficult to prepare and maintain
the initial pure state. Especially, the nuclear magnetic resonance (NMR) system is typically applied



Quantum Algorithms and Initialization 7

to physical systems in equilibrium at room temperature. This means that the initial state of the spins
is nearly completely random, that is, it is difficult to prepare pure quantum states of nuclear spins in
NMR systems. So our result, by which the initializing steps of a certain pure state can be removed
and any initial state can be recovered, would help a lot to avoid such an effort in present-day
experimental implementations of quantum computation.

3.3 Relationship to the Original Goals

The original goal was to construct quantum algorithms which can determine certain properties of
given mathematical functions in a polynomial time without initializing the input quantum state.
That is, quantum algorithms which determines

1. Whether a Boolean function is balanced or not
2. Whether a function is evenly balanced or not
3. Whether a function is evenly distributed or not

in a polynomial times without the initialization of the input state.

As the result of this research, we have accomplished all the contents of our original goals and
furthermore, we have constructed a systematic method to construct efficient quantum algorithms
solving period-finding problem and Simon’s problem without any initialization of the auxiliary
register.

It can be also shown that our new method can be applied to various kinds of so called ‘hidden
subgroup problems’ to which, many problems known to be hard classically have some reductions.
Since most of known “exponentially fast” applications of the Quantum Fourier transform (QFT)
can be considered as a generalization of finding unknown period of a periodic function, the
existence of these quantum algorithms implies that any initialization of the auxiliary qubits may be
unnecessary in many quantum algorithms.

4. Personnel Supported
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5. Publication

Dong Pyo Chi, Jeong San Kim and Soojoon Lee, Quantum algorithms without initializing the
auxiliary qubits, Phys. Rev. Lett. 95, 080504 (2005); Dong Pyo Chi, Jeong San Kim and Soojoon
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Since it is essential to search evenly distributed functions (which are also called regular function)
in classical symmetric cryptography to design secure block ciphers, our algorithm can be used in
this procedure.

- Complexity class

New quantum algorithms that are exponentially faster than any classical algorithms can be
introduced and our work can enlarge some class of quantum computational complexity.

- Present-day experimental implementations of quantum computation

The experimentally realizable proposals for the implementation of quantum algorithms, it may be
technically difficult to prepare the initial pure state which has been considered to be necessary.
More specifically, in experimental preparation of quantum states by means of the nuclear magnetic
resonance (NMR) system, it is known to be difficult to prepare pure quantum states of nuclear spins
in NMR systems. Hence, it would be a lot helpful to use our method of quantum algorithms which
can be efficiently performed even though the initial states or some parts of them are not in a specific
pure state. Furthermore, since the parts of the initial state remain intact even after the computation,
the parts could be reused in any other computations, which would save a large amount of the
preparation cost in actual physical implementation of quantum algorithms.
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In this Letter, we construct the quantum algorithms for the Simon problem and the period-finding
problem, which do not require initializing the auxiliary qubits involved in the process of functional
evaluation but are as efficient as the original algorithms. In these quantum algorithms, one can use any
arbitrarily mixed state as the auxiliary qubits, and furthermore can recover the state of the auxiliary qubits
to the original one after completing the computations. Since the recovered state can be employed in any
other computations, we obtain that a single preparation of the auxiliary qubits in an arbitrarily mixed state
is sufficient to implement the iterative procedure in the Simon algorithm or the period-finding algorithm.

DOI: 10.1103/PhysRevLett.95.080504

Quantum computational algorithms can be executed in
parallel on superpositions of exponentially many input
states, and their outcomes can be properly measured by
virtue of quantum interference. These enable exponential
speedups in the solutions of certain problems and allow
one to distinguish between the quantum computational
complexity classes and the classical ones [1-10].

It is assumed that most quantum algorithms require
some initialization at start-up., which is to prepare a certain
pure state as an initial state. However, in experimentally
realizable proposals for the implementation of quantum
algorithms, it may be technically difficult to prepare the
initial pure state. Especially, the nuclear magnetic reso-
nance (NMR) system is typically applied to physical sys-
tems in equilibrium at room temperature. This means that
the initial state of the spins is nearly completely random,
that is, it is difficult to prepare pure quantum states of
nuclear spins in NMR systems. Hence, it would be inter-
esting whether quantum algorithms can be efficiently per-
formed even though the initial states or some parts of them
are not in a specific pure state. If it would be possible, then
the technical difficulty could be settled to a certain extent.
and furthermore if the parts of the initial state would
remain intact even after the computation, then the parts
could be reused in any other computations. We call such a
quantum algorithm the initialization-free quantum algo-
rithm when any quantum state can be used as the auxiliary
(target) qubits involved in the functional evaluation |x)
[v) =[x} ® |y + f(x)) for a given function f, and it can be
recovered after the computation.

In the initialization-free quantum algorithms, which are
implemented without initializing and deforming the state
of the auxiliary qubits, any qubits (which might contain
some other useful information) can be temporarily used as
the auxiliary qubits, and the initial state of the auxiliary
qubits can be recovered at the end of the computation. Thus
we can compose the auxiliary qubits of any qubits regard-
less of whether they are entangled with others or are being
used in another computational process. Furthermore. in the

0031-9007/05/95(8)/ 080504 (4)$23.00

080504-1

PACS numbers: 03.67.Lx, 03.65.Ta

case of iterative algorithms, in which one needs to perform
the algorithm several times to solve given problems, the
initialization-free quantum algorithms can be implemented
with the same auxiliary qubits repeatedly, while the origi-
nal iterative algorithms require the initial auxiliary qubits
of a certain pure state at each repetition.

There have been a few research works related to the
initialization-free quantum algorithms. Biham er al.
[11,12] have generalized Grover’s algorithm [6] by allow-
ing for an arbitrary initial amplitude distribution, and have
shown that Grover's algorithm (or, a large class of Grover-
type algorithms) is robust against modest noise in the
amplitude initialization procedure. Parker and Plenio [13]
found that one pure qubit and an initial supply of log, N
qubits in an arbitrarily mixed state are sufficient to imple-
ment Shor’s quantum factoring algorithm [5] efficiently,
where the idea of using one pure qubit and other mixed
qubits as the initial state was first introduced by Knill and
Laflamme [14]. Their result implies that the controlled
unitary transformations in Shor’s algorithm can be imple-
mented without any initialization of the auxiliary qubits.
while the auxiliary qubits cannot be left in the initial state.
Subsequently. Chi er al. [15] have presented a quantum
algorithm to implement an oracle computing |x) —
27 WIM| vy for f1Zy — Z,; by making use of an oracle
of the form |x) @ [y) — |x) ® |y + f(x)) without setting the
auxiliary qubits to a definite state before the computation,
and have shown that generalized Deutsch-Jozsa algorithms
can be implemented without any initialization of the aux-
iliary qubits when an oracle computing ‘U z:|x) ® |y) —
Xy @ [y + f(x)) is employed.

In this Letter, we deal with two problems, the Simon
problem [4] and the period-finding problem [5]. which can
be solved efficiently by the quantum computer, and present
the initialization-free quantum algorithms for these prob-
lems. Since most of known “exponentially fast™ applica-
tions of the quantum Fourier transform (QFT) can be
considered as a generalization of finding an unknown
period of a periodic function, the existence of these quan-

© 2005 The American Physical Society
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tum algorithms implies that any initialization of the auxil-
iary qubits may be unnecessary in many quantum
algorithms.

We first recall the Simon problem [4] that can be solved
in polynomial time on a quantum computer but that re-
quires exponential time on any classical bounded-error
probabilistic Turing machine if the data are supplied as a
black box, and we then investigate initialization-free tech-
niques for the Simon problem. We note that there exists an
exact quantum polynomial-time algorithm for the Simon
problem [9]. However, here we deal with the original
Simon algorithm that is polynomial time in the expected
sense.

For convenience, we use the following notations. Let

= (Z4, ®,) be a group under the binary operation &,
which is the bitwise XOR operation. For a subset A of G, let
|A| denote the cardinality of A.

We define a bilinear map G X G — Z, by

XY =XYo® XY ... ® Xy Va1 (1
where x = (xg, X, ..., X, and y = (o, Yo oo v, Yo y) are
elements in G for Xj ¥j € Z,, and @ is the XOR operation,

which is the addition modulo 2. This bilinear map clearly
satisfies the property that (x®, y)z=x-z@®y - z for x,
v,and z in G.

For a subgroup H of G, let

Hi={x€Gx-y=0 forall y € H)} ()

denote the orthogonal subgroup of H. We note that the
quotient group G/H is well-defined since G is an Abelian
group.

Let f:G — G be an arbitrary (wo-to-ene map such that
flx)=fly)ifand only ifx @, y € H where H = {0, h} is
a subgroup of G for some nonzero i € G. Then the Simon
problem is to find the subgroup H. that s, to determine the
value of h. The original Simon algorithm is as follows:
(i) Prepare |07) ® |07). (ii) Apply W, ® I, where W, is
the n-qubit Walsh-Hadamard transform defined as |x)
(VIGDZ,ea (17 Iy). (i) Apply Uy. (iv) Apply
‘W, ® I. Then the resulting state is

® =1 3 ChUeliw).  6)

yEHL XEG/H
We measure the first n-qubit state. Then for eachy & Ht.
the probability with which we obtain y as the outcome is
4 2
1= — 4)
IGP 2 IGI

TEG/H

(P|(|y)y| @ I)|P) =

Thus, after expected O(n) repetitions of this procedure, at
least n linearly independent values of y can be collected so
that the nontrivial 2* is uniquely determined by solving the
linear system of equations /1" - y = 0. Then we have h* =
h as required.

Now we present the initialization-free quantum algo-
rithm for the Simon problem. We first consider the follow-
ing quantum algorithm: (i) Prepare an n-qubit state in the
state |0") as the control qubits and an n-qubit state in an
arbitrary pure state | W) = Za;|k) as the auxiliary qubits.
(i) Apply W, e I. (iii) Apply Ug, where Uf:|x) ®
[y} = |x) @ [y @, fx)). (iv) Choose a random n-bit string
w = (wq, wy, ...,w,,_l) and apply S, =o"®0c!'®

.® o;"™" on the n-qubit auxiliary qubits, that is, apply
Ie Sw- (V) Apply UZ. (vi) Apply I @ S,,. (vii) Apply
‘W, ® I. Then the resulting state becomes

2
FA

2 @ (=1 |y
= (= 1) (= 1) })I;)@I*P). (s)

yeH" (}EG/H

‘We now measure the first n-qubit state. Then for each y €
HYL, the probability with which we obtain y as the mea-
surement outcome is

4

GP (=1 FE (=1
T

IEG/H

P.(y)= (©)

Hence. the expected probability of obtaining y for ran-
domly chosen w is

|c| 2 P = |c|‘ >

3 (==

wEG weG ! xeG/H
4 = ( (—1 )W'U[x]e“f[x"]])
|C| II'EG/H \WEG
X (— 1)@ (7

Since f is one to one on G/ H, that is, f(x) # f(x') if and
only if x # &', th inner summation in (7) always vanishes
for f(x)®, f ) #0, and the summation is |G| for
flx)®, f(x') = 0. Thus, for each y € HL. the expected
probability (7'} becomes 2/|G].

For any auxiliary qubits of the state py = Zp, |V, ) X
(Wl we let p = |0")0"| ® pg. Then the superoperator A,
which maps p to the quantum state

1.3 ©
where A, =(W,® INI® SaUf(Ie Sw)’l‘[j'?ﬂ’lf,t ®
I) performs the initialization-free Simon algorithm, since
if the first n-qubit state in A(p) is measured, then it follows
from (7) that the probability to oblain y as the measurement
outcome is

[y}l ® DA(p)] = = Y>P.)==r O
Gl £, IG]

which is the same probability as that of the original Simon

algorithm. Furthermore, when y is obtained as the mea-

surement outcome, the resulting state after the measure-

ment becomes [y)y| ® pgp. Therefore. this initialization-
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free quantum algorithm can efficiently solve the Simon
problem.

Similarly, we can present the initialization-free quantum
algorithm for the period-finding problem. We first review
the original quantum algorithm for the period-finding prob-
lem, and then present the initialization-free period-finding

algorithm, which can be considered as a generalization of

the initialization-free Simon algorithm.

Let f:Zy — Zym be a periodic function with an un-
known period 7, that is, f(x) = f(x + kT) for 0 =k =
[2"/T] (or 0 = k = [2"/T] + 1), where [¢] is the greatest
integer not more than ¢. Then the period-finding problem is
to find 7. Classically, this problem is known
to be hard in the sense that no classical algorithms
that can find T in polynomial time have been found.
However, there exists a polynomial-time quantum algo-
rithm for the period finding [5]. which is as follows:
Let N = 2" (i) Prepare [07) ® |0™). (ii) Apply F® I,
where F is the N-dimensional QFT defined as |x) —
(1/NN)ZN e2mxy/N|y). (i) Apply U (iv) Apply F @
I. Then the resulting state becomes

1 N-1T-14,—1

v 2 2 2 T el (10)
y=0 x=0 ;=0

where A, = [N/T]or|N/T| + 1. Now we measure the first
n-qubit state, and then the probability of obtaining y as a
measurement outcome is

1 2
2miyjT/N

(11)

=

=0
We note that there are precisely T values of y in

{0,1,..., N — 1} satistying

— yIT(modN) = (12)

w|-1

w|-;

and for cach y satistying (12), the probability of obtaining
such y can be bounded asymptotically,
41

P(}‘)Eﬁ?' (13)

Thus, with probability at least 4/7,-2, the measured value of

v salisfies the inequalities (12): that is, y salislies the
following inequalities:

k 1 y _k 1
S S 14
T 2N N T 2N’ a4
or equivalently
y_ ki1 (15)
N T 2N

with k randomly chosen in {0, 1,..., T — 1} depending on
the measurement outcome. Therefore, for sufficiently
small T with respect to N, the value k/T can be efficiently
extracted from the measured y/N by the continued fraction

method. Since k and T may be relatively prime with high
probability, we can get the period T in polynomial time
with respect to logN.

The initialization-free quantum algorithm for the period-
finding problem can be presented by the procedure similar
to the initialization-free Simon algorithm. Instead of S, =
@0 ®...@ 0. for a randomly chosen n-bit
string w in (3), we employ an m-qubil unitary operation
U,, for arandomly chosen m-bit string w defined as |y) —
XM — 3y where M = 2", We proceed with the fol-
lowing quantum algorithm: (i) Prepare an n-qubit state in
the state [0") and an m-qubit state in an arbitrary pure state
|W) =Sy lk). (i) Apply FeI. (iii) Apply U,
(iv) Choose a random m-bit string w and apply U, on
the m-qubit state of the auxiliary qubits, that is, apply I @
U, (v) Apply Uy (vi) Apply T @ U,,. (vii) Apply F @
I. Then the resulting state becomes

N—1,T—14,—1

- Z(Z Z ezniy[x+jT],w€2mwf(x]/M)|y> ® PI,—) (](‘:)

x=0 ;=0

Hence, the probability with which we can get |y) as a
measurement outcome of the first n-qubit state is

T—1A,—1
P.(y) ’IZ Z 2TYEHITIN Q2mivf (/M2 (|7)
“’ J
N x=l) ;=0
By straightforward calculations, we can get the expected
probability of obtaining y for randomly chosen w,
1 7ol

=
= P,(y)=—
v 2" " X

As in the initialization-free Simon algorithm, for any
m-qubit state pg = S pp| VWi, we let p = [0")0"| @
pg. and let the superoperator A be defined as

A.\’

Z 2TiviTIN

=0

(18)

pH— Z A, pAl, (19)

where A, =(Fe IN(IeU,)U(Te U)UAF&I)
Then the superoperator A can perform the period-finding
algorithm efficiently without any initialization on the aux-
iliary qubits, since the probability of obtaining [y) satisfy-
ing (12) is

2aiy jT/N

tr[(ly)yl ® HA(p)] = (20)

2

=0

which is the same probability as that of the original period-
finding algorithm in (11). Furthermore, as in the
initialization-free Simon algorithm, the resulting state after
the measurement becomes |v)(y| ® pp when y is the mea-
surement outcome. Therefore, there exists an initialization-
free quantum algorithm that can efficiently solve the
period-finding problem.
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In conclusion, we have investigated the initialization-
free quantum algorithms, which do not require any initial-

ization of the auxiliary qubits involved in the process of
functional evaluation and which recover the initial state of

the auxiliary qubits after completing the computations. We
have considered quantum algorithms for the Simon prob-
lem and the period-finding problem, and have presented
the initialization-free quantum algorithms for the prob-
lems, which are as efficient as the original ones.

The iterative algorithms such as the Simon algorithm

and the period-finding algorithm demand the storage of

auxiliary qubits and the extra operations to initialize the
state of the auxiliary qubits, whenever the procedure re-
peats. However, if one utilizes our initialization-free
technique, then the size of the storage can be reduced
and the extra operations can be omitted, since the same
auxiliary qubits can repeatedly be used in our algorithms.
Furthermore, since most known applications of the QFT
can be considered as a generalization of finding an un-
known period of a periodic function (for example, Shor’s
factoring algorithm [5] and Hallgren’s more recent algo-
rithm for solving Pell’s equation [10]), the initialization-
free technique could be applied to a lot of implementations
of quantum algorithms.

The authors thank D. A. Lidar and M. Grassl for helpful
comments. D.P.C. was supported by a Korea Research
Foundation grant (KRF-2004-059-C00060) and by Asian
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In this Letter, we construct the quantum algorithms for the Simon problem and the period-finding
problem, which do not require initializing the auxiliary qubits involved in the process of functional
evaluation but are as efficient as the original algorithms. In these quantum algorithms, one can use
any arbitrarily mixed state as the auxiliary qubits, and furthermore can recover the state of the
auxiliary qubits to the original one after completing the computations. Since the recovered state
can be employed in any other computations, we obtain that a single preparation of the auxiliary
qubits in an arbitrarily mixed state is sufficient to implement the iterative procedure in the Simon

algorithm or the period-finding algorithm.

PACS numbers: 03.67.Lx, 03.65.Ta

Quantum computational algorithms can be executed
in parallel on superpositions of exponentially many input
states, and their outcomes can be properly measured by
virtue of quantum interference. These enable exponential
speedups in the solutions of certain problems, and allow
one to distinguish between the quantum computational
complexity classes and the classical ones [1, 2, 3, 4, 5, 6,
7.8, 9, 10].

It is assumed that most quantum algorithms require
some initialization at start-up, which is to prepare a cer-
tain pure state as an initial state. However, in experi-
mentally realizable proposals for the implementation of
quantum algorithms, it may be techmically difficult to
prepare the initial pure state. Especially, the nuclear
magnetic resonance (NMR) system is typically applied
to physical systems in equilibrium at room temperature.
This means that the initial state of the spins is nearly
completely random, that is, it is difficult to prepare pure
quantum states of nuclear spins in NMR systems. Hence,
it would be interesting whether quantum algorithms can
be efficiently performed even though the initial states or
some parts of them are not in a specific pure state. If it
would be possible, then the technical difficulty could he
settled to a certain extent, and furthermore if the parts of
the initial state would remain intact even after the com-
putation, then the parts could be reused in any other
computations. We call snch a quantum algorithm the
initialization-free quantum algorithm when any quantum
state can be used as the auxiliary (target) qubits involved
in the functional evaluation |z) & |y) — |z) @ |y + f(z))
for a given function f, and it can be recovered after the
computation.

In the initialization-free gquantum algorithms, which
are implemented without initializing and deforming the
state of the auxiliary qubits, any qubits (which might

*Electronic address: dpchi@math.snu.ac.kr
TElectronic address: freddiel@snu.ac.kr
tElectronic address: level@khu.ac.kr

contain some other useful information) can be temporar-
ily used as the auxiliary qubits, and the initial state of
the auxiliary qubits can be recovered at the end of the
computation. Thus we can compose the auxiliary qubits
of any qubits regardless of whether they are entangled
with others or heing used in another computational pro-
cess. Furthermore, in the case of iterative algorithms, in
which one needs to perform the algorithm several times
to solve given problems, the initialization-free quantum
algorithms can be implemented with the same auxiliary
qubits repeatedly, while the original iterative algorithms
require the initial auxiliary qubits of a certain pure state
at each repetition.

There have heen a few research works related to
the initialization-free quantum algorithms. Biham et
al. [11, 12] have generalized Grover’s algorithm [6] by al-
lowing for an arbitrary initial amplitude distribution, and
have shown that Grover’s algorithm (or, a large class of
Grover-type algorithms) is robust against modest noise in
the amplitude initialization procedure. Parker and Ple-
nio [13] found that one pure qubit and an initial supply of
logy N qubits in an arbitrarily mixed state are sufficient
to implement Shor’s quantum factoring algorithm [5] effi-
ciently, where the idea of using one pure qubit and other
mixed qubits as the initial state was first introduced by
Knill and Laflamme [14]. Their result implies that the
controlled unitary transformations in Shor's algorithm
can be implemented without any initialization of the aux-
iliary qubits, while the auxiliary qubits cannot be left in
the initial state. Subsequently, Chi et al. [15] have pre-
sented a quantum algorithm to implement an oracle com-
puting |@) — e2T /M gy for f 1 Zy — Far by making
use of an oracle of the form |z) @ |y) — |z} @ |y + f(z))
without setting the auxiliary qubits to a definite state be-
fore the computation, and have shown that generalized
Deutsch-Jozsa algorithms ean be implemented without
any initialization of the auxiliary qubits when an oracle
computing Uy : |z) = |y) — |2) @ |y + flz)) is employed.

In this Letter, we deal with two problems, the Si-
mon problem [4] and the period-finding problem [5],
which can be solved efficiently by the quantum com-
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puter, and present the initialization-free quantum algo-
rithms for these problems. Since most of known “expo-
nentially fast” applications of the quantum Fourier trans-
form (QFT') can be considered as a generalization of find-
ing unknown period of a periodic function, the existence
of these quantum algorithms implies that any initializa-
tion of the auxiliary qubits may be unnecessary in many
quantum algorithms.

We first recall the Simon problem [4] that can be solved
in polynomial time on a quantum computer but that re-
quires exponential time on any classical bounded-error
probabilistic Turing machine if the data is supplied as
a black box, and we then investigate initialization-free
techniques for the Simon problem. We note that there
exists an exact quantum polynomial-time algorithm for
the Simon problem [9]. However, we here deal with the
original Simon algorithm which is pelynomial-time in the
expected sense.

For convenience, we use the following notations. Let
G = (Z3,<,) be a group under the binary operation ,,
which is the bitwise XOR operation. For a subset A of
G, let |A| denote the cardinality of A.

We define a bilinear map G x G — Zs by

Ty = xoyo By BB a1 Ya—1 (1)
where z = (20,1, »a_1) 3nd ¥ = (Jo, 41, »¥n_1)
are elements in G for z;,y; € Zo, and @ is the XOR

operation, which is the addition modulo 2. This bilinear
map clearly satisfies the property that (z &, y) -z =
z-z&y-zforz,yand zin G.

For a subgroup H of G, let

Hi={reG:z.y=0 forally= H} (2)

denote the orthogonal subgroup of H. We remark that
the quotient group G/H is well-defined since GG is an
abelian group.

Let f: G — G be an arbitrary two-to-one map such
that f(x) = f(y) if and only if z &, y € H where H =
{0, 1} is a subgroup of G for some nonzero h € G. Then
the Simon problem is to find the subgroup H, that is, to
determine the value of h. The original Simon algorithm
is as follows: (i) Prepare |0") co [0™). (ii) Apply W, @
T, where W, is the n- quhit \Valsh Ha,clama,rcl transform

defined as |z} — (1//|G) 2, ca(—1)"¥y). (iii) Apply

.

\C|Z‘D =

we G

o
L

Il
1S
)
M
P

Since f is one-to-one on G/H, that is,

73]

flz) # f(2) if

Us. (iv) Apply Wy, @ I. Then the resulting state is

(8]

(i;\ —

¥ y) o |f(=)y. (3)

yeHL 1ef_,,fH

We measure the first n-qubit state. Then for each
y € H*, the probability with which we obtain y as the
outcome is

(P () (y| 2 I) |®) = == = — 1)
(s D8 =57 ¥ 1=

TG/ H

Thus, after expected O(n) repetitions of this procedure,
at least n linearly independent values of i can be collected
so that the nontrivial i* is uniquely determined by solv-
ing the linear system of equations h* -y = 0. Then we
have h* = & as required.

Now we present the initialization-free quantum algo-
rithm for the Simon problem. We first consider the fol-
lowing quantum algorithm: (i) Prepare an n-qubit state
in the state [0") as the control qubits and an n-qubit
state in an arbitrary pure state |U) =3, ag|k) as the
auxiliary qubits. (ii) Apply W, @ I. (iii) Apply l»{eﬁ
y T flx)). (iv) Choosea
r:mdom n-bit string w = (wp,wy, - ,wy—1) and apply
Sy=0" R ®---®az""" on t.he n-qubit auxiliary
qubits, that is, apply T &8y (v) Apply MJEF. (vi) Apply
T @ 8. (vil) Apply W,, @ Z. Then the resulting state
becomes

where EJ"B |z} @ |y) — |z) ®

ly) @ [B).  (5)

g | = ooy

yeHL \zZeG/H

We now measure the first n-qubit state. Then for each
y € H', the probability with which we obtain y as the
measurement outcome is

_ 4 @y
;MM—GP¥§;1) (=% . (6)

Hence, the expected probability of obtaining y for ran-
domly chosen w is

Y (@)

(_1)u-(f(2‘)$nf(1"ﬂ) (_1)(1‘€(+nx’)-y_ (7)

and only if 7 # 7, the inner summation in (7) always
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vanishes for f(z) @, f(2') 2 0, and the summation is
|G| for f(x) &, f(z') = 0. Thus, for each y £ H+, the
expected probability (7) becomes 2/|G.

For any auxiliary qubits of the state pp =
S PrlWy) (W, we let p = 10")(0"| @ pg. Then the su-
peroperator A, which maps p to the quantum state

\Cl > Auwphl, (8)

weld

where Ay, = W, @ I)(T = Sw)(/:’;? (T &0 Sy UE(W, = T),
performs the initialization-free Simon algorithm, since if
the first n-qubit state in A{p) is measured, then it follows
from (7) that the probability to obtain y as the measure-

ment outcome is
P (9)
IC | 2 Z |

which is the same probability as that of the original
Simon algorithm. Furthermore, when y is obtained
as the measurement outcome, the resulting state after
the measurement becomes |y){(y| = pp. Therefore, this
initialization-free quantum algorithm can efficiently solve
the Simon problem.

Similarly, we can present the initialization-free quan-
tum algorithm for the period-finding problem. We first
review the original quantum algorithm for the period-
finding problem, and then present the initialization-free
period-finding algorithm, which can be considered as a
generalization of the initialization-free Simon algorithm.

Let f : Zon — Zom be a periodic function with
an unknown period T, that is, f(z) = f(z + kT') for
0 <k < [27/T] (or, 0 < k < |27"/T| 4+ 1). Then
the | perlod finding problem is to find T'. Classically, this
problem is known to be hard in the sense that no clas-
sical algorithms which can find 7" in polynomial time
have been found. However, there exists a polynomial-
time quantum algorithm for the period finding [5], which
is as follows: Let N = 2", (i) Prepare |07} @ [0™). (ii)
Apply F@T, where F is the N-dimensional QFT defined
as |x) — (1/VN) To 0 2™/ |y) - (iii) Apply Uy, (iv)
Apply F @ I. Then *he resulting state becomes

tr [(ly) ty| @ T)A(

2
,_.

T—1Ag—1

Z 27rzy(a‘+jT)/.N'|y3 ® |f(l‘)‘;‘ (10)

j=0

1

=]

0 2=

o
I

where A, = [N/T] or [N/T| 4 1. Now we measure the
first n-qubit state, and then the probability of obtaining
y as a measurement outcome is

2
i: i: 2miyjT (N . (11)

We note that there are precisely T values of y in

10,1,--- N — 1} satisfying

< yT (mod N) < (12)

S
ol =

and for each y satisfying (12), the probability of obtaining
such y can be bounded asymptotically,

Ply) > 5= (13)
Thus, with probability at least 4/72, the measured value

of y satisfies the inequalities (12), that is, y satisfies the
following inequalities:

T oW N*T'aN 1)
or equivalently
Y k 1
] 15
N T|~2N (15)
with & randomly chosen in {0,1,-.- 7 — 1} depending

on the measurement outcome. Therefore, for sufficiently
small 7' with respect to N, the value k/T can be effi-
ciently extracted from the measured y/N by the contin-
ued fraction method. Since k and T may be relatively
prime with high probability, we can get the period T in
polynomial time with respect to log N.

The initialization-free quantum algorithm for the
period-finding problem can be presented by the proce-
dure similar to the initialization-fee Simon algorithm. In-
stead of 8§, = ol" ol @ .. @ o2 ™t for a randomly
chosen n-bit string w in (5), we employ an m-qubit uni-
tary operation U, for a randomly chosen m-bit string w
defined as |y) — 2™¥/M | ) where M = 2™. We pro-
ceed with the following quantum algorithm: (i) Prepare
an n-qubit state in the state |0") and an m-qubit state in
an arbitrary pure state |U) =3, ag|k). (ii) Apply F&T.
(iii) Apply Uy. (iv) Choose a random m-bit string w and
apply U, on the m-qubit state of the auxiliary qubits,
that is, apply 7« Uy, (v) Apply Uy, (vi) Apply 1 @ U,
(vii) Apply F @ I. Then the resulting state becomes

1 N—-1 fT-1A:-1

? Z Z Z EB;‘rzy(I+3T),f'g’\f€27r1mfl'r)/'ﬂ;’ |y} ® “D‘,‘

y=0 x=0 j=0

(16)

Hence, the probability with which we can get |y) as a
measurement outcome of the first n-qubit state is

T—1Az—1 2
— E E : 2miy(e+iT)/N emiw fix o) /M
AAUS V z=0 =0
(17)

By straightforward caleulations, we can get the expected
probability of obtaining y for randomly chosen w,

2

1 M-1 1 T—-1| Az
— 2"rzy3Tf'V
3 2 P = 2 ) e . (8)
w= x=0 |j=0



Quantum Algorithms and Initialization

17

As in the initialization-free Simon algorithm, for any
m-qubit state pg = 3, pr| W) (Ti|, welet p = |07)(0"|@
B, and let the superoperator A be defined as

1 M-1
: Z AwpAl,
M &

where Ay = (F @) (T Uy )Up(T @ Uy )Us (F@T). Then
the superoperator A can perform the period-finding al-
gorithm efficiently without any initialization on the aux-
iliary qubits, since the probability of obtaining |y) satis-
fyving (12) is

(19)

pH

1 T-1| Az 2
tr (|9} (Wl @ DA = 37 D_ | D™, (20)
T x=0|j=0

which is the same probability as that of the original
period-finding algorithm in (11). Furthermore, as in the
initialization-free Simon algorithm, the resulting state
after the measurement becomes |y)(y| @ pgp when y
is the measurement outcome. Therefore, there exists
an initialization-free quantum algorithm which can ef-
ficiently solve the period-finding problem.

In conclusion, we have investigated the initialization-
free quantum algorithms, which do not require any ini-
tialization of the auxiliary qubits involved in the process

of functional evaluation, and which recover the initial
state of the anxiliary qubits after completing the compu-
tations. We have considered quantum algorithms for the
Simon problem and the period-finding problem, and have
presented the initialization-free quantum algorithms for
the problems, which are as efficient as the original ones.

The iterative algorithms such as the Simon algorithm
and the period-finding algorithm demand the storage of
auxiliary qubits and the extra operations to initialize the
state of the auxiliary qubits, whenever the procedure re-
peats. However if one utilizes our initialization-free tech-
nique then the size of the storage can be reduced and the
extra operations can be omitted, since the same auxiliary
qubits can repeatedly be used in our algorithms. Further-
more, since most known applications of the QFT can be
considered as a generalization of finding unknown period
of a periodic function (for example, Shor’s factoring algo-
rithm [5] and Hallgren’s more recent algorithm for solv-
ing Pell's equation [10]), the initialization-free technique
could be applied to a lot of implementations of quantum
algorithms.
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